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Abstract
We revisit an inequality due to Onsager, which states that the (quantum) liquid
structure factor has an upper bound of the form (const) × |�k|, for not too large
modulus of the wave vector �k. This inequality implies the validity of the
Landau criterion in the theory of superfluidity with a definite, nonzero critical
velocity. We prove an auxiliary proposition for general Bose systems, together
with which we arrive at a rigorous proof of the inequality for one of the very
few solvable examples of an interacting Bose fluid, Girardeau’s model. The
latter proof demonstrates the importance of the thermodynamic limit of the
structure factor, which must be taken initially at �k �= �0. It also substantiates
very well the heuristic density functional arguments, which are also shown to
hold exactly in the limit of large wavelengths. We also briefly discuss which
features of the proof may be present in higher dimensions, as well as some
open problems related to superfluidity of trapped gases.

PACS numbers: 67.40.−w, 67.40.Db

1. Introduction

The properties of the Fourier transform of the pair (or density–density) correlation—in
particular its extrapolation to zero angle, and the corresponding relation to the isothermal
compressibility—have been thoroughly studied in connection with the critical behaviour of
classical fluids (see M E Fisher’s early review [1]). The situation is very different regarding the
corresponding quantity—which we shall call the liquid structure factor—for quantum Bose
fluids [2]. Even for the impenetrable Bose gas—a prototype of one-dimensional systems
with on-site repulsion—very few results on correlation functions exist, notably on the Fourier
transform of the one-particle density matrix, a mathematical tour-de-force by Lenard [3].
Some results on higher-order correlations exist as well [4], in connection with the so-called
Fisher–Hartwig conjecture [5], but they are restricted to Dirichlet or Neumann boundary
conditions (b.c.).
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The quantum liquid structure factor plays a crucial role in the Feynman variational ansatz
[6], but periodic b.c. are essential in this context, because the corresponding wavefunction
must have definite momentum.

In this paper we present a rigorous proof of Onsager’s inequality [2] for the liquid structure
factor in the one-dimensional impenetrable Bose gas (Girardeau’s model [7]). This inequality
implies the validity of Landau’s criterion of superfluidity [8] with a definite, nonzero critical
velocity. Some features of the proof hold—others are expected to hold—in higher dimensions,
as discussed in the conclusion.

2. Onsager’s inequality, the Landau criterion and the Feynman ansatz: summary

Several criteria for superfluidity exist in the literature [9]. By one of the standard criteria [9],
the free Bose gas is a superfluid, while by the Landau criterion (see, e.g., [8]), it is not. Landau
postulated a spectrum of elementary excitations (see, e.g., figure 13.11 of [10]), which leads,
by a well-known argument, to the startling property of superfluidity of the Bose fluid, i.e., the
fact that under certain conditions its viscosity (e.g., of liquid He-II) vanishes, i.e., the liquid is
capable of flowing without dissipation through very thin capillaries, as long as the velocity �v
of the liquid has an absolute value below a certain critical speed vc:

|�v| � vc. (1)

In general, vc increases as the diameter of the capillary decreases. See [10] or [11] as
excellent introductory texts.

The Hamiltonian of a system of N particles in a cube � of side L, upon which periodic
b.c. are imposed, may be written (we use units such that h̄ = m = 1, where m is the mass of
the particles):

H� = −1

2

N∑
j=1

�j + V (�x1, . . . , �xN). (2)

The momentum operator may be written as

�P � = −i
N∑

j=1

∇j . (3)

Above,

V =
∑

1�i<j�N

�(�xi − �xj ), (4)

where � is the interparticle potential, which we assume to satisfy the conditions appropriate
to existence of the thermodynamic limit [12]. Let

U�v ≡ ei�v·(�x1+···+�xN ) (5a)

be the unitary operator which implements Galilean transformations. The operator
implementing unitary Galilean transformation has actually the form

Ut
�v = ei�v·[(�x1+···+�xN )−t �P �]. (5b)

However we may restrict ourselves to t = 0 in (5b), and use (5a) instead, just for the purpose
of obtaining the transformed Hamiltonian (energy), which indeed yields the correct formula
(7). The reason for the latter is that the commutator of the generator of U�v in (5b) with H� is
independent of t, because

[H�, �P �] = 0. (6)
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The operators are defined on the Hilbert spaceH� = L2
sym(�N) of symmetric square integrable

wavefunctions over the N-fold Cartesian product of the cube � with itself, satisfying periodic
b.c. on �. We shall disregard the spin variable. We have

H̃ �v
� ≡ U ∗

�v H�U�v = H� + �v · �P � + 1
2N �v2. (7)

Suppose the fluid moves with constant velocity �v with respect to some fixed inertial frame
F. In the rest frame of the fluid the Hamiltonian is H�, and by (6) H̃ �v

� is the Hamiltonian with
respect to the frame F. In the rest frame of the fluid, it possesses a unique ground state ��,
with energy E0(N,L) say, and zero momentum:

H��� = E0(N,L)��, (8a)

�P ��� = �0. (8b)

The fact that the ground state is simple, i.e., nondegenerate, is a property of bosons only which
will be used later (see, e.g., [11] for a popular textbook account: for precise conditions on �

in (4) see [13], where a proof is given). By (6)–(8),

H �v
��� = (

E0(N,L) + 1
2N �v2

)
��. (9a)

Thus the energy eigenvalue of �� in frame F is

EF
0 ≡ E0(N,L) + 1

2N �v2. (9b)

Because of (6), there exist common eigenstates of H� and �P �, which we denote by ψ
�k
�, i.e.,

H�ψ
�k
� = E�(�k)ψ

�k
�, (10)

�P �ψ
�k
� = �kψ

�k
�, (11)

where �k ∈ �∗, and

�∗ ≡
{

2π

L
�n, �n ≡ (n1, n2, n3), ni ∈ Z, i = 1, 2, 3

}
. (12)

Let ψ
(0),�k
� be common eigenstates of H� and �P � of the smallest energy above E0(N,L),

which we denote by E�
0 (�k). Under certain conditions, seen to be realized in soluble models

[7, 14, 15], it may be expected that

E�
0 (�k) = E0(N,L) + ε�(�k), (13)

where ε�(�k) is the energy of an ‘elementary excitation’ (see [15] for a better definition of this
important concept, which should not be confused with ‘quasiparticle’—the latter dissipate).
By (7) and (13), the energy of the lowest energy excitations above the ground state in frame F
is given by

E0(N,L) + ε�(�k) + �v · �k + 1
2N �v2. (14)

There will be dissipation if this energy is smaller than the energy of �� in frame F, which is
given by (9b); thus, by (9b) and (14), there is no dissipation, i.e., there is superfluidity, if

ε�(�k) + �v · �k � 0, (15)

which is expected to hold if (1) is satisfied. This is Landau’s criterion. It is satisfied (with
a calculable vc) in the two remarkable models [7, 14, 15]. Relation (15) also provides the
condition for �� to be the ground state in the moving frame.
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In order to formulate Landau’s criterion more precisely, we have to define the
thermodynamic limit of ε�(�k) for any �k, not only those in (12). Let {�n} be an increasing
sequence of periodic boxes,

�kn ∈ �∗
n and �kn −→ �k �= �0. (16a)

Since any real number can be expressed as a limit of rational numbers, we may define

ε̃(�k) = lim
n

ε�n
(�kn). (16b)

On the above-defined ε̃(�k) we formulate then

Assumption 1. ε̃(�k) > 0 for �k �= �0 is independent of the sequence in (16b) and is a
continuous function of �k when the limit on the rhs of (16b) exists.

By (15), (16) and assumption 1, the following inequality holds for all �k ∈ R
3:

ε̃(�k) + �v · �k � 0. (17)

The above may look too pedantic, but we shall see that the thermodynamic limit will play an
important role later on. With the above assumptions, we shall drop the tilde on ε(�k) from now
on. We remark that assumption 1 has been proved in at least one case, that of magnons (or
spin-waves) in quantum ferromagnets [16, 17].

An important attempt to ‘explain’ (17), i.e., to derive (17) from microscopic laws, was
undertaken by Bogoliubov (see [8] for an excellent review), assuming the existence of Bose
Einstein condensation (BEC). As remarked by Leggett in his beautiful review [18], ‘while
extremely suggestive, Bogoliubov’s result referred to a dilute system, which is rather far
from real-life liquid He-II’. What seems to be usually not emphasized is that Bogoliubov’s
model, even in the version which conserves particle number [8], is not Galilean-covariant, i.e.,
does not satisfy (7), and, thus, does not satisfy local mass conservation, an essential physical
requirement (this seems to be well known but, for a proof, see [19]). Bogoliubov’s seminal
work led, however, to the genesis of an understanding of e0(ρ) (defined by (26)) through later
work (see [20] and references given there). One of its important byproducts was the realization
that it is the repulsive part of the potential which plays the major role in superfluidity. This is
vindicated in the remarkable one-dimensional models of Girardeau [7] and Lieb and Liniger
[14, 15]. The latter, however, illustrate an important fact: superfluidity is independent of BEC,
because these models display superfluidity in the sense of Landau [15], but no BEC (this was
proved in [3] for Girardeau’s model, and is presumably also true for the Lieb–Liniger model).

As remarked by Leggett in [18], a particular successful attack on the full He-II problem
(i.e., not only the dilute case) was made by Feynman [6] and Feynman–Cohen [21] (see also
Lieb’s remarkable early review [20]) through a variational wavefunction (in our notation (8),
(10), (11)):

ψ
�k
�(�x1, . . . , �xN) ≡

N∑
i=1

ei�k·�xi ��(�x1, . . . , �xN), (18)

(the Feynman–Cohen ansatz [21] leads to somewhat better results, but we shall not consider
it in this paper). By using partial integration, and the periodic b.c. (see, e.g., [11], exercise
p 262, or [6]), we obtain〈

ψ
�k
�

∣∣H�ψ
�k
�

〉〈
ψ

�k
�

∣∣ψ �k
�

〉 = E0(N,L) + E�(�k), (19)
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where

E�(�k) ≡ N�k2

2
〈
ψ

�k
�

∣∣ψ �k
�

〉 =
�k2

2S�(�k)
(20)

and

S�(�k) = 1

N

〈
ψ

�k
�

∣∣ψ �k
�

〉 = 1

N

∫
�N

d�x1 · · · d�xN

∣∣∣∣∣
N∑

i=1

e−i�k·�xi

∣∣∣∣∣
2

�2
�(�x1, . . . , �xN). (21)

(As follows from the Perron–Frobenius theorem, �� is unique, and may be taken to be positive
[13]). Except for a factor ρ = N

V
, (21) defines the liquid structure factor, which may—in

the case of liquid He-II—be measured independently of the excitation spectrum, by x-ray
scattering (see [10], figure 13.10).

By (21), S�(�k) has a direct physical interpretation: it is—for �k �= �0—the Fourier transform
of the pair correlation function in the ground state ([1], p 951).

Equation (18) and the min–max principle imply that, for �k �= �0, (19) is an upper bound
to the energies of the ‘elementary excitations’, i.e., the lowest eigenvalues of H� which are
larger than the ground state energy. The following assumption will be made:

Assumption 2. The Feynman ansatz (18) yields a (qualitatively) good approximation to the
energy of the elementary excitations.

The above assumption is widely accepted today [18], because it is confirmed by experiment
both for liquid He-II [10] and for trapped gases [22].

Assumptions 1 and 2 imply, together with (20), that

Assumption 1′. Under (16a), the limit

S(�k) ≡ lim
n

S�n
(�kn), (22)

exists and is a continuous function of �k.

The fact that it is necessary to take the thermodynamic limit with �k �= �0 is shown in appendix A
for the free Bose gas: the limits �k → �0 and the thermodynamic limit do not commute. This
procedure also has a physical reason: it is necessary to eliminate the (infinite) forward
scattering peak, i.e., by considering �k �= �0, before probing the density–density correlations for
the infinite system ([1], p 951).

2.1. Onsager’s inequality

Inequality (23) (with condition (24)) will be referred to as Onsager’s inequality [2]:

S(�k) � c|�k|, �k �= �0, (23)

where

0 < c < ∞ (24)

is a constant independent of N,L, but possibly dependent on ρ.
We see from the above definition that Onsager’s inequality, taken together with Feynman’s

ansatz (assumption 2 and (18)) implies Landau’s condition (17), with vc (defined by (1))
given by

vc = (2c)−1. (25)
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For the free Bose gas S�(�k), given by (21), equals 1 (see (A.2) of appendix A), which is, of
course, necessary in order to be compatible with (20).

Let e0(ρ) denote the ground-state energy per particle in the thermodynamic limit

e0(ρ) = lim
L→∞

E0(ρL3, L)

(ρL3)
. (26)

By [12] e0(ρ) is a convex function of ρ. Thus, when e′′
0(ρ) ≡ d2e0(ρ)/dρ2 exists,

e′′
0(ρ) � 0.

We assume that

0 < e′′
0(ρ) < ∞. (27)

Equations (23) and (24) constitute a precise formulation of Onsager’s inequality [2], with

c ≡
(

1

ρe′′
0(ρ)

)1/2

. (28)

Note that (24) and (28) are consistent due to (27) if we assume 0 < ρ < ∞ which we do
henceforth.

In this paper we derive (23) and (24) for a soluble model, Girardeau’s model [7], defined
in section 4, which is believed to be a prototype of a class of one-dimensional Bose fluids with
pointwise repulsive interactions. We believe that several aspects of the derivation are relevant
to higher dimensions and discuss this in section 5. In particular, proposition 1 of section 3 is of
general validity, as shown in [2]. Our derivation in section 3 ‘rounds off’ some points left over
in [2], such as emphasizing the important role of nondegeneracy of the ground state—which
leads to nondegenerate perturbation theory—and the vanishing of some mixed terms (36). In
section 4 we conclude the proof of (23) and (24) for Girardeau’s model.

It is important to realize the intrinsically nonperturbative nature (in �k) of the bound (23)
on S�(�k) in the thermodynamic limit. Writing in (21),∣∣∣∣∣

N∑
i=1

e−i�k·�xi

∣∣∣∣∣
2

= 1 +
N∑

i,j=1
i �=j

e−i�k·(�xi−�xj ), (29)

it becomes clear that the double sum above would contribute a term O(N2)/N = O(N) to
S�(�k) if the configurations �xi ≈ �xj ,∀i �= j were not suppressed: due to the strong repulsion
at short distances, such configurations are highly improbable in �(�x1, . . . , �xN) (think of hard
cores). But the linear term in the perturbative expansion (in �k) of (29) is identically zero by
symmetry, thus suggesting S�(�k) = O(|�k|2)!

3. Proof of an auxiliary proposition

We now provide a proof of an auxiliary proposition (proposition 1). The derivation in [2] is
incomplete in some details. Let P0,� denote the projector onto the orthogonal complement

�⊥
� of the unique ground state ��,ψ

(�k)
� be given by (18), and

A� ≡ P0,�(H� − E0(N,L))1/2P0,�, (30)
B� ≡ P0,�(H� − E0(N,L))−1/2P0,�. (31)

Since, by (8) and (18), ψ
�k
� is an eigenfunction of �P � with eigenvalue �k, and �k �= �0,

ψ
�k
� ∈ P0,�H�, and thus, by the Schwarz inequality〈

ψ
�k
�

∣∣ψ �k
�

〉2 = 〈
A�ψ

�k
�

∣∣B�ψ
�k
�

〉2 �
〈
A�ψ

�k
�

∣∣A�ψ
�k
�

〉〈
B�ψ

�k
�

∣∣B�ψ
�k
�

〉
(32)
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but 〈
A�ψ

�k
�

∣∣A�ψ
�k
�

〉 = 〈
P0,�ψ

�k
�

∣∣(H� − E0(N,L))P0,�ψ
�k
�

〉
= 〈

ψ
�k
�

∣∣(H� − E0(N,L))ψ
�k
�

〉
= N

�k2

2
(33)

by partial integration and use of the periodic b.c. We also have that〈
B�ψ

�k
�

∣∣B�ψ
�k
�

〉 = 〈
ψ

�k
�

∣∣(H� − E0(N,L))−1/2P0,�(H� − E0(N,L))−1/2ψ
�k
�

〉
= 〈

��

∣∣W �k
N

∗
(H� − E0(N,L))−1P0,�W

�k
N��

〉
. (34)

In (34), W
�k
N is the multiplication operator(

W
�k
Nϕ

)
(�x1, . . . , �xN) =

N∑
i=1

ei�k·�xi ϕ(�x1, . . . , �xN). (35)

We now write W
�k
N = ∑N

i=1 cos(�k · �xi) + i
∑N

i=1 sin(�k · �xi) in (34). For finite N,L, (H� −
E0(N,L)) has a nonzero lower bound on P0,�H�, and insertion of a basis of eigenstates
|φi〉 of (H� − E0(N,L)) in P0,�H� is rigorously justified because �� is a normalized state.
Furthermore, because H� is a real operator, we may choose this basis of eigenstates |φi〉 as
consisting of real functions. The ‘mixed terms’ in (34)∑

j

−i

Ej − E0
〈��|

N∑
i=1

sin(�k · �xi)|φj 〉〈φj |
N∑

i=1

cos(�k · �xi)|��〉 (36a)

and ∑
j

i

Ej − E0
〈φj |

N∑
i=1

cos(�k · �xi)|��〉〈��|
N∑

i=1

sin(�k · �xi)|φj 〉 (36b)

thus add to zero, and we obtain from (34) and analytic perturbation theory [23]:

Proposition 1.〈
ψ

�k
�

∣∣ψ �k
�

〉2 � N�k2

2

〈
B�ψ

�k
�

∣∣B�ψ
�k
�

〉
(37a)

where〈
B�ψ

�k
�

∣∣B�ψ
�k
�

〉 = 1

2

(
− ∂2

∂λ2
E0,1(N,L, λ)

)
λ=0

+
1

2

(
− ∂2

∂λ2
E0,2(N,L, λ)

)
λ=0

(37b)

Above, E0,1(N,L, λ) is the ground-state energy of the Hamiltonian

H
(1)
� (λ) ≡ H� − E0(N,L) + λ

N∑
i=1

cos(�k · �xi) (38a)

and E0,2(N,L, λ) is the ground-state energy of the Hamiltonian

H
(2)
� (λ) ≡ H� − E0(N,L) + λ

N∑
i=1

sin(�k · �xi). (38b)

By (34) and the argument following it the two quantities on the rhs of (37) are also the second-
order energy terms in analytic perturbation theory [23, 24]. The boson nature of the particles
is used to the sole extent that the ground state is nondegerate [13]. The radius of convergence
of the perturbation series in λ is expected to tend to zero as (1/N), for our N-particle system,
but this is no source of trouble as long as λ is taken to go to zero in (37) for fixed, finite N and
L. What is remarkable in (37) and (38) is the fact that the perturbation is an external potential.
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4. Onsager’s inequality and Girardeau’s model

A heuristic but appealing argument due to Onsager (see [2] and appendix B) yields

lim
N→∞
L→∞
N

L3 =ρ

[
1

N

〈
B�ψ

�k
�

∣∣B�ψ
�k
�

〉]
� c1 (39)

where

c1 ≡ 1

ρe′′
0(ρ)

(40)

whenever the limit on the lhs of (39) exists. Putting together (21), (32), (33), (39) and (40),
we arrive at (25) and (28) with c = (c1/2)1/2.

Other arguments (see, e.g., (A.97)–(A.103) of [10], ‘longitudinal sum rules’) which
yield S(�k) ∼ c|�k| for |�k| sufficiently small, all depend on the argument in appendix B. This
is a density-functional type of argument, which, in general, is not generally justifiable for
fermions, whenever the ground state is degenerate [25]. For bosons, the ground state is
nondegenerate, and density-functional theory looks the same as for fermions, but it has been
rigorously established recently that, even in the dilute limit, a semiclassical description of
bosons is impossible (see, e.g., [26], remarks after (2.12)). Thus, the derivation of (39) and
(40) given in [2] (a somewhat better version of which, with corrections, is given in appendix B)
is conceptually open to question. But, perhaps most importantly, the derivation has a
‘miraculous’ character, because in (34) the contribution of intermediate states is expected
to yield (const)×|�k|−1 due to the denominator (H� −E0(N,L))−1 and the fact that the lowest
states are expected to have energy ε�(�k) ∼ c|�k| above the ground state! These matters are
dealt with in a different way in the appendix of [21]: there, the argument relies on the study
of the terms of a perturbation theory which likely diverges.

We now examine (39) and (40) in the light of one of the very few soluble models of a
superfluid, the Girardeau model (the Lieb–Liniger model [14, 15] is expected to yield similar
results). We shall see that the results confirm (39) and (40) surprisingly well, and formula
(B.11), derived from density functional theory, holds exactly, in the limit �k → �0.

We start by the Hamiltonian of the Lieb–Liniger model [14]

Hd
N,L = −1

2

N∑
i=1

∂2

∂x2
i

+ 2d
∑

1�i<j�N

δ(xi − xj ) (41)

with d > 0, with periodic b.c. on a box of length L. In the limit d → ∞ one obtains
a model of impenetrable bosons, with the impenetrable core shrunk to a point, previously
treated by Girardeau [7], and called Girardeau’s model. Both models exhibit two branches of
Bogoliubov excitations which satisfy Landau’s criterion [15], and which recently have been
seen experimentally [27]. Since the results on Girardeau’s model may be obtained from the
Lieb–Liniger model (41) by continuity as d → ∞ [14, 15], we expect that our results are also
true for the richer model (41), and are, thus, prototypical of this class of models.

One of the basic features of Girardeau’s model is that, due to the repulsive interaction,
the system acquires a finite compressibility (proportional to (e′′

0(ρ))−1), in contrast to the free
Bose gas, for which, e.g., with Dirichlet b.c.,

E0(ρL3, L) = fρL

where f is a constant, and thus, by (28), e0(ρ) = 0 for all ρ. Thus e′′
0(ρ) is also identically

zero, i.e., c1 = +∞ in (39) and (40). Thus inequality (23) (with c given by (28)) is trivially
true by (A.2).
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Performing the limit d → ∞ on (41) is equivalent to impose the subsidiary condition:

ψ(x1, . . . , xN) = 0 if xj = xl, 1 � j < l � N. (42)

The Bose eigenfunctions ψB satisfying (42) and periodic b.c. with period L are given [7] as

ψB = ψFA (43a)

where

A(x1, . . . , xN) =
∏
j>l

sgn(xj − xl). (43b)

Above, sgn(x) is the algebraic sign of x, and ψF are Fermi energy eigenfunctions satisfying
(42), which are just the eigenfunctions of a free Fermi gas. For odd N we fill the ‘Fermi
sphere’

− 1
2 (N − 1) � p � 1

2 (N − 1) (44)

and the ground-state energy is

E0(N,L) =
1
2 (N−1)∑
p=1

(
2πp

L

)2

= 1

6
(N − N−1)(πρ)2. (45)

Thus the ground-state energy density in the thermodynamic limit equals

e0(ρ) = 1
6π2ρ3 (46)

and thus

e′′
0(ρ) = π2ρ (47)

which satisfies (27).
By (37), (38), (44)

〈
B�ψk

�

∣∣B�ψk
�

〉
may be calculated by the formula (N odd)〈

B�ψk
�

∣∣B�ψk
�

〉 = 1

2

{(
− ∂2

∂λ2
E0,1(N,L, λ)

)
λ=0

+

(
− ∂2

∂λ2
E0,2(N,L, λ)

)
λ=0

}
(48)

E0,1(N,L, λ) =
1
2 (N−1)∑

p=− 1
2 (N−1)

E1(p, λ) (49)

E0,2(N,L, λ) =
1
2 (N−1)∑

p=− 1
2 (N−1)

E2(p, λ) (50)

where E1(p, λ) are the energy levels of the one-particle Hamiltonian

H = H0 + λH1 (51)

with

H0 = −1

2

d2

dx2
(52)

and

H1 = cos(kx) (53)

on H = L2
per[0, L], with k ∈ �∗ = {

2π
L

n, n ∈ Z \ {0}} and the zeroth-order level of H0

corresponding to E1(p, λ) is

E
(0)
1 (p) = 1

2

(
2πp

L

)2

(54)
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with p satisfying (44). The levels E2(p, λ) are the same, just replacing H1 by H2 = sin(kx).
The level p = 0 of H0 is nondegenerate, all the others in (44) are doubly degenerate, with
energies (54) and eigenfunctions

ϕp,α=1 = 1√
L

ei 2πp

L
x, ϕp,α=2 = 1√

L
e−i 2πp

L
x; p ∈

{
1, 2, . . . ,

N − 1

2

}
. (55)

By Kato degenerate perturbation theory [23], ([24], (10.88)) we find the levels up to second
order by solving the equation

det
{
λ〈ϕp,β |H1|ϕp,α〉 + λ2〈ϕp,β |H1SpH1|ϕp,α〉 − (

E1(p, λ) − E
(0)
1

)
δβ,α

} = 0 (56)

where

Sp ≡ Q(0)
p

E
(0)
1 I − H0

, Q(0)
p = I − P (0)

p (57)

and

P (0)
p = |ϕp,1〉〈ϕp,1| + |ϕp,2〉〈ϕp,2|. (58)

Using (55), (57) and (58) and plane-waves as intermediate states to calculate the second
term in (56), we find that equation (56) may be written as

det

(
a − µ c

c a − µ

)
= 0 (59)

with

µ ≡ E1(p, λ) − E
(0)
1 (60)

a = −λ2

k2 − 4
(

2π
L

p
)2 δ 2π

L
p �= k

2
(61)

c = λ

2
δk, 4π

L
p +

λ2

4εk

δ 2π
L

p,k; εk = k2

2
. (62)

The discriminant of (59) is 4a2 − 4(a2 − c2) = 4c2 > 0, and thus the eigenvalues for µ are

µ± = a ± c. (63)

The cases p = 0,
2πp

L
= k, and 2πp

L
= k

2 are isolated values which by (48) and (49) do not
affect the thermodynamic limit on the lhs of (39). Disregarding these, we see by (63) that the
eigenvalues remain doubly degenerate and equal to a, given by (61). Thus, by (48), (49) and
(61), and the fact that the second term in (48) is equal to the first, which may be proved, we find

e�(k) ≡ 1

N

〈
B�ψk

�

∣∣B�ψk
�

〉 = 4

(
L

2πN

) (
2π

L

) 1
2 (N−1)∑

p=− 1
2 (N−1)

p �=0
2πp

L
�=± k

2

1

k2 − 4
( 2πp

L

)2 . (64)

Clearly the rhs of (64) has a natural extension ẽ�(k) to all k �= 0, obtained by interpreting
k in (64) as a real variable. We now find, from (64), the following proposition proved in
appendix C:

Proposition 2.

ẽ(k) ≡ lim
N→∞
L→∞
N
L

=ρ

ẽ�(k) = 4

2πρ
Pv

∫ πρ

−πρ

1

k2 − 4x2
dx. (65)
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Remark 1. The principal value on the rhs of (65) may computed, with the result

Pv

∫ πρ

−πρ

1

k2 − 4x2
dx = 1

|k| arccoth

(
2πρ

|k|
)

. (66)

The limit k → 0 on the rhs of (66) can be performed by l’Hôpital’s rule or more simply by
noting that arccoth(2πρ/|k|) ≈ |k|/2πρ, so that

lim
k→0

1

|k| arccoth

(
2πρ

|k|
)

= 1

2πρ
. (67)

We finally have

Theorem 1. For Girardeau’s model, under assumption 1′ S(k) satisfies Onsager’s inequality
(23) and (24), with

c = 1√
2

1

πρ
t (68a)

where

t � 1.0481. (68b)

Proof. By proposition 2, for any sequence {�n} of periodic boxes, the limit limn e�n
(k) is

a continuous function of k ∈ [0, πρ] and it follows from appendix C that the convergence
ẽ�(k) → ẽ(k) is uniform in � for k in compact subsets of (0, πρ], i.e., not containing the
origin. Thus, by (16a) and assumption 1’, for all k �= 0,

S�(k) = lim
n

S�n
(kn) � k√

2
lim

n
e�n

(kn) = k√
2

lim
n

ẽ�n
(kn)

= k√
2

lim
n

ẽ�n
(k) = k√

2
ẽ(k) � c|k| (69)

where

c ≡ sup
k∈[−πρ,πρ]

{
1√
2

√
2

πρ|k| arccoth

(
2πρ

|k|
)}

= 1√
2

1

πρ
t (70)

where t � 1.0481, corresponding to the value k = πρ, by appendix D. This is Onsager’s
inequality (23), (24), with c given by (68). �

Remark 2. The result of density functional theory (appendix B) holds as an equality, only in
the limit k → 0, because, from (65), (66) and (67)

lim
k→0

lim
N→∞
L→∞
N
L

=ρ

[
1

N

〈
B�ψk

�

∣∣B�ψk
�

〉] = 1

(πρ)2
(71)

which agrees with (B.11). However, from appendix D, we see that (B.11) holds in very
good approximation for all k. We shall comment on the reasons for that a priori unexpected
behaviour in the conclusion.

Remark 3. Equations (64) and (65) show explicitly the importance of performing the limit
k → 0 after the thermodynamic limit. Indeed, putting k = 0 in (64) we obtain a Pv on the
rhs which diverges. More precisely, the proof of proposition 2 given in appendix C becomes
invalid.
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5. Conclusions and outlook

The Feynman variational ansatz is widely accepted today [18]. There is a good reason for that:
when compared with experiment, it leads to the famous phonon–roton spectrum of superfluid
4He (see, e.g., figure 13.11 of [10]). The ansatz is only expected to hold for not too large |�k|
(|�k| � kc ≈ 3.5 Å

−1
), becoming unstable with respect to the decay into several other types of

excitations with lower energies [28]. It is also well established for trapped gases [22].
In this paper we assumed the validity of the ansatz (assumption 3) and attempted to

derive a precise connection between it and Landau’s criterion of superfluidity (17). This is
achieved through the use of Onsager’s inequality (23) and (24), whose first part was proved in
section 3, proposition 1, which ‘rounds off’ the ‘almost rigorous proof’ (see [20]) presented
in [2]. The second part was proved in section 4, proposition 2 and theorem 1, for Girardeau’s
model, a prototype of a one-dimensional Bose fluid with pointwise repulsive interactions.
Some features of this proof—in particular the importance of taking k → 0 only after the
thermodynamic limit and the role of the one-site repulsion to guarantee the existence of the
latter—will be present in higher dimensions. Indeed, as remarked by Lieb in [15], the fact
that “the potential is effectively a kinetic energy barrier for large γ = d/ρ (where d is defined
by (41))—a result that also holds in three dimensions—means that it is really immaterial
to the particles whether they can ‘get around each other’ or merely ‘through each other’.”
The double spectrum predicted in [15] has been found experimentally [27], substantiating the
above conjectures to some extent.

For trapped gases, a recent remarkable proof establishes superfluidity according to one
of the standard criteria [29]. The latter is, however—as asserted by the authors of [29]—also
satisfied by the free Bose gas—in contrast to the Landau criterion. The criteria are therefore
inequivalent and it should therefore be most interesting to prove (23) and (24) for trapped
gases, in the limit considered in [26] (a review where further references can be found) by
which the range of the potential also tends to zero. A first step is the result ([26], remarks after
theorem 7.1, in particular (7.2), (7.3) and (7.4)) that there is 100% condensation for all
n-particle reduced density matrices, and ([26], corollary 7.2) (convergence of momentum
distribution for the one-particle density matrix), but the momentum behaviour of the two-
particle density matrix remains to be studied.

It seems rather difficult to show (23) and (24) directly for Girardeau’s model: a study of
correlation functions in the model is at present restricted to Dirichlet and Neumann b.c. [4].
Thus, our bound for S�(�k) (with periodic b.c.) is new even for Girardeau’s model.

Finally, it is gratifying that our result (69) agrees exactly with (B.11) of density-functional
theory in the limit k → 0, because the latter is, in a sense, like the Thomas–Fermi theory,
of semiclassical nature, which is then expected to hold in the limit of large wavelengths.
However, appendix D even shows excellent agreement for all k ∈ [−πρ, πρ], which may be
intuitively understood from (37) (proposition 1) whereby the lhs of (B.11) depends only on
the variation of certain energies with respect to the interaction with an external field. The
latter is taken care of exactly in density functional theory (first term on the rhs of (B.3)) and is
thus a very special case, which is not affected by the problems pointed out in [25] and ([26],
remarks after (2.12)). Since the arguments in appendix B are independent of the dimension,
this agreement is very strong evidence that (23) and (24) hold for any dimension.
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Appendix A

In this appendix we study the liquid structure factor (21) for the free Bose gas, where

�� = 1

L3/2
⊗ · · · ⊗ 1

L3/2
.

For �k �= �0

S�(�k) = 1

NL3N

∫
�N

d�x1 · · · d�xN

∣∣∣∣∣
N∑

i=1

e−i�k·�xi

∣∣∣∣∣
2

= 1 +
1

NL3N

∑
1�i �=j�N

∫
�N

d�x1 · · · d�xN e−i�k·(�xi−�xj )

= 1 +
N(N − 1)

NL3N
L3(N−2)

∫
�2

d�x1 d�x2 e−i�k·(�x1−�x2)

= 1 + (N − 1)L−6

(∫
�

d�x e−i�k·�x
)2

. (A.1)

By (A.1)

S�(�k) = 1 if �k �= �0, �k ∈ �∗ (A.2)

while

S�(�0) = N if �k = �0. (A.3)

Thus,

lim
N→∞
L→∞
N

L3 =ρ

S�(�0) = +∞. (A.4)

Equations (A.2)–(A.4) show that it is crucial to take the thermodynamic limit with �k �= �0, and
only thereafter the limit �k → �0, in order to find the behaviour of the liquid structure factor for
large wavelength. Note that (A.2) must hold in order to be compatible with (20) in the free
case.

Appendix B

In this appendix we present in some detail a more precise, albeit nonrigorous, variant of
Onsager’s derivation of (39) and (40) [2]. Note that there are misprints and some incorrectness
in the derivation in [2].

By the variational principle, for the Hamiltonian (38a) ((38b) is, of course, treated the
same way); the ground-state energy is

E(N,L, λ) = inf
ψ

〈
ψ

∣∣H(1)
� (λ)ψ

〉
. (B.1)

In (B.1), ψ are normalized test functions, for N bosons in a periodic cube � of side L. Each
test function corresponds to a test-one-particle density

ρ(�x) = N

∫
�N

d�x2 d�x3 · · · d�xN |ψ(�x, �x2, . . . , �xN)|2. (B.2)
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We compute the infimum (B.1) in two steps [25]: first, we fix a test-function ρ(�x) and denote
by

{
ψα

ρ

}
α

the class of test functions with this ρ. Define the constrained energy minimum,
with fixed ρ, as

E�{ρ} ≡ inf
α

〈
ψα

ρ

∣∣H(1)
� (λ)ψα

ρ

〉
=

∫
�

vλ(�x)ρ(�x) d�x + F�{ρ} (B.3)

where

vλ(�x) ≡ λ cos(�k · �x) (B.4)

and

F�{ρ} ≡ inf
α

〈
ψα

ρ

∣∣H� − E0(N,L)|ψα
ρ

〉
(B.5)

is a universal functional of the density. In the second stage, we find the infimum over all ρ:

E0(N,L, λ) = inf
ρ

E�{ρ}. (B.6)

Let ρ�
λ (�x) correspond to the infimum in (B.6), and ρ�(�x) to the infimum in (B.6) for λ = 0,

which we assume are attained in a suitable space.
By the definition (28) of e0, it is reasonable to assume from (B.5), for large �, that

F�{ρ} =
∫

�

[
e0

{
ρ�

λ (�x)
} − e0{ρ�(�x)}] d�x (B.7)

for some functional e0{ρ}, such that in the thermodynamic limit ρ�(�x) → ρ, and e0(ρ) is
given by (28). By (B.3), (B.4), (B.6) and (B.7):

E0(N,L, λ) ≡
∫

�

d�x[
e0

{
ρ�

λ (�x)
} − e0{ρ�(�x)}] + λ

∫
�

d�xρ�
λ (�x) cos(�k · �x)

∼= 1

2
e′′

0(ρ)

∫
�

d�x[
ρ�

λ (�x) − ρ�(�x)
]2

+ λ

∫
�

d�xρ�
λ (�x) cos(�k · �x)

for � ‘sufficiently large’ and λ ‘sufficiently small’. Equating the functional derivative with
respect to ρ�

λ in (B.8) to find the minimum, we obtain, under assumption (29)

e′′
0(ρ)

[
ρ�

λ (�x) − ρ�(�x)
]

+ λ cos(�k · �x) = 0

and

ρ�
λ (�x) − ρ�(�x) = − λ

e′′
0(ρ)

cos(�k · �x). (B.9)

Inserting (B.9) into (B.8) we find for the actual minimum value

E0(N,L, λ) = λ2

2
(e′′

0(ρ))−1
∫

�

d�x cos2(�k · �x) − λ2(e′′
0(ρ))−1

∫
�

d�x cos2(�k · �x)

+ λρ

∫
�

d�x cos(�k · �x) = −λ2

2
(e′′

0(ρ))−1
∫

�

d�x cos2(�k · �x) (B.10)

for �k �= �0. Repeating the calculation for (38b), we obtain the same result as the rhs of (B.10)
except for the replacement of cos2(�k · �x) by sin2(�k · �x). Finally, for the rhs of (39) we get

1

N

〈
B�ψ

�k
�

∣∣B�ψ
�k
�

〉 = (e′′
0(ρ))−1 L3

N
= 1

ρe′′
0(ρ)

(B.11)

from which (39) and (40) follow as an equality. It should be clear to the reader that the
above derivation, while appealing, is far from rigorous. Indeed, (B.11) does not hold as an
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−πρ πρ

A1

A2

−k
2

k
2

εL = 2π
L

0

Figure 1. Graph of f : x → 1
( k

2 )2−x2 .

equality, as proved in the main text, but, as shown in appendix D, it is very close to the exact
result. Indeed, by (47), the rhs of (B.11) is (1/π2ρ2) = (1/π2) for ρ = 1. By (65), it must
be compared with (2/π)f (x), where f (x) is the function plotted in appendix D. The value
plotted for x = 0 is (1/2π), which yields the rhs of (B.11), but we see from that table that the
value plotted even for x = π is very close to the value for x = 0.

Appendix C

Proof of proposition 2. We must prove that the rhs of (64) is, in the thermodynamic limit,

I ≡ 8

2πρ
Pv

∫ πρ

−πρ

dx

k2 − 4x2
= 8

2πρ
lim
ε→0

(∫ −ε

−πρ

dx

k2 − 4x2
+

∫ πρ

ε

dx

k2 − 4x2

)
. (C.1)

The difficulty lies in the fact that, in the rhs of (64), the ‘integration step’ εL ≡ 2π/L may
not be directly identified with the ε in (C.1), because it depends on L. In figure 1 we show the
graph of the function f : x → 1(

k
2

)2 − x2
.

Let us call the finite sum over the p � 0 on the rhs of (64) by �l (the argument for the
right side is the same). We have

�l = A1 + �1
l + A2 + �2

l , (C.2)

where �1
l is the sum of the areas of all inscribed rectangles between −k/2 + εL and zero, and

�2
l is the sum of the areas of all inscribed rectangles between −πρ and −k/2 − εL.

We have, by symmetry,

A1 = −A2 (C.3)

while

�1
l =

∫ 0

− k
2 +εL

dx(
k
2

)2 − x2
+ α1

L (C.4)

and

�2
l =

∫ − k
2 −εL

−πρ

dx(
k
2

)2 − x2
− α2

L (C.5)
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Figure 2. Plot of f (x) for ρ = 1.

where

α1
L − α2

L −→
L→∞

0 for fixed k �= 0. (C.6)

In order to prove (C.4), we note that α1
L is the sum of the areas of the regions in black in

figure 1 which lie to the left of (−k/2 − εL), while α2
L is the sum of the areas in black between

(−k/2 + εL) and zero:

α1
L =

(∫ − k
2 −εL

−πρ

f ′(x) dx

)
εL[1 + o(1/L)] (C.7)

α2
L =

(∫ 0

− k
2 +εL

f ′(x) dx

)
εL[1 + o(1/L)]. (C.8)

Now

εL

∫ − k
2 −εL

−πρ

f ′(x) dx = εL

1

(−k/2 + x)(−k/2 − x)

∣∣∣∣∣
− k

2 −εL

−πρ

= εL

1

−k − εL

1

εL

− εL

1

(−k/2 − πρ)(−k/2 + πρ)

= 1

−k − εL

+ εL

1

(k/2 + πρ)(πρ − k/2)
(C.9)

while

εL

∫ 0

− k
2 +εL

f ′(x) dx = εL

1

(−k/2 + x)(−k/2 − x)

∣∣∣∣∣
0

− k
2 +εL

= εL

(k/2)2
+ εL

1

−k + εL

1

εL

. (C.10)

For k �= 0, (C.7)–(C.10) establish (C.6). Putting (C.6) into (C.2)–(C.5) we obtain that the
thermodynamic limit of the rhs of (64) indeed equals I, given by (C.1). �

Appendix D

In this appendix, we show the behaviour of the function on the rhs of (66):

f (x) = 1

x
arccoth

(
2πρ

x

)
,

defined for x � 0.
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Setting ρ = 1, we construct the following table:

x f (x)

0 0.159 155 (∗)

π/10 0.159 288
π/5 0.159 689
3π/10 0.160 365
2π/5 0.161 329
π/2 0.162 601
3π/5 0.164 205
7π/10 0.166 178
4π/5 0.168 565
9π/10 0.171 428
π 0.174 850

where (∗) is the limit (67).
In figure 2, we plot f (x) for ρ = 1.
We thus see that in the interval [0, π ], f is monotonically increasing, and thus the largest

value for c, given by the rhs of (68), is the square root of the ratio f (π)/f (0) ≡ t2 �
0.174 850/0.159 155 � 1.0986, which equals t � 1.0481.
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